You may view all the posts of the category "Animation"
![]() |
|
(Compiled with Asymptote version 1.86svn-r4626) |
import graph_settings; import animate; size(10cm); settings.tex="pdflatex"; settings.outformat="pdf"; pair[] interp(pair[] a1, pair[] a2, real k) { if(a1.length != a2.length) abort("interp: arrays have differents length."); pair[] g; int l=a1.length; g=sequence(new pair(int j){ return interp(a1[j],a2[j],k); },l); return g; } path morphing(pair[] a1, pair[] a2, real k, interpolate join=operator --) { if(a1.length != a2.length) abort("morphing: arrays have differents length."); return join(...interp(a1, a2, k)); } pair[] nodes(path g, int n) { int np=round(n/length(g)); n=np == 0 ? n : np*length(g); return sequence(new pair(int i){return point(g, length(g)*i/n);}, n); } animation A; int nbpt=4; pair[] A1=nodes(unitsquare,nbpt); path g=(0,0)--(1,0)--(0,1)--(1,1)--cycle; pair[] A2=shift(2,1)*rotate(25)*nodes(g,nbpt); interpolate join=operator ..; // interpolate join=operator --; int n=40; real step=1/n; pen p1=0.8*red, p2=0.8*blue; filldraw(join(morphing(A1,A2,0,join),cycle), p1); filldraw(join(morphing(A1,A2,1,join),cycle), p2); for (int i=0; i <= n; ++i) { save(); filldraw(join(morphing(A1,A2,i*step,join),cycle),opacity(0.5)+interp(p1,p2,i*step)); A.add(); restore(); } A.movie();