![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
dot(Label("$\frac{\pi^2}{2}$",(0,0),align=E));
Compétitivité-Qualité-Fiabilité-Disponibilité
![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
dot(Label("$\frac{\pi^2}{2}$",(0,0),align=E));
![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
dot(Label("$A$"),(0,0),S);
![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
size(4cm,4cm); dot(Label("$A$"),(0,0),S); draw(E--W,invisible); draw(N--S,invisible); shipout(bbox());
![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
dot(Label("$A$",fontsize(20pt)),(0,0),NE);
![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
defaultpen(fontsize(20pt)); dot(Label("$A$"),(0,0),NE); dot(Label("$B$"),(2cm,0),NE+N);
![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
size(4cm,0); pair A=0, B=(1,0), C=(2,2);; draw(A--B--C--cycle); dot("$A$",A,dir(C--A,B--A)); dot("$B$",B,dir(C--B,A--B)); dot("$C$",C,dir(A--C,B--C));
![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
size(0,0); path line=(0,0)--(3cm,0); transform T=shift(0,-cm); draw("$A$",line); draw("$B$",T*line,dir(0)); draw("$C$",T^2*line,N); draw(Label("$D$",fontsize(14pt)),T^3*line);
![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
size(0,0); path line=(0,0)--(3cm,0); transform T=shift(0,-cm); draw(Label("A",align=Center,filltype=UnFill), line); draw(Label("B",UnFill), T*line, Center); draw(Label("C",align=Center,position=Relative(.75),UnFill), T^2*line); draw(Label("D",position=Relative(.25),UnFill), align=Center, T^3*line);
![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
size(3cm,0); pair A=0, B=(1,0), C=(1,1); draw("$1$",A--B); draw("$1$",B--C); // draw(rotate(dir(C--A))*"$\sqrt{2}$",C--A); draw(Label("$\sqrt{2}$",Rotate(-dir(C--A))),C--A);
![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
size(3cm,0); path g=(1,1)--(3,2); draw(Label("a text",Rotate(dir(g))), g); draw(Label("a text",red,Rotate(-dir(g)),align=I*dir(g)), g);
![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
size(4cm,0); real a=360/6; for (int i = -1; i < 5; ++i) draw(Label(format("%i",i+1)),arc((0,0),10,i*a,(i+1)*a)--cycle,grey);
![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
// From Asymptote's FAQ import graph; real width=15cm; real aspect=0.3; picture pic1,pic2; size(pic1,width,aspect*width,IgnoreAspect); size(pic2,width,aspect*width,IgnoreAspect); scale(pic1,false); scale(pic2,false); real xmin1=6; real xmax1=9; real xmin2=8; real xmax2=16; real a1=1; real a2=0.001; real f1(real x) {return a1*sin(x/2*pi);} real f2(real x) {return a2*sin(x/4*pi);} draw(pic1,graph(pic1,f1,xmin1,xmax1)); draw(pic2,graph(pic2,f2,xmin2,xmax2)); xaxis(pic1,Bottom,LeftTicks()); yaxis(pic1,"$f_1(x)$",Left,RightTicks); xaxis(pic2,Bottom,LeftTicks(Step=4)); yaxis(pic2,"$f_2(x)$",Left,RightTicks); yequals(pic1,0,Dotted); yequals(pic2,0,Dotted); pair min1=point(pic1,SW); pair max1=point(pic1,NE); pair min2=point(pic2,SW); pair max2=point(pic2,NE); real scale=(max1.x-min1.x)/(max2.x-min2.x); real shift=min1.x/scale-min2.x; transform t1 = pic1.calculateTransform(); transform t2 = pic2.calculateTransform(); transform T=xscale(scale*t1.xx)*yscale(t2.yy); add(pic1.fit()); real height=truepoint(N).y-truepoint(S).y; add(shift(0,-height)*(shift(shift)*pic2).fit(T));
![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
/* This code comes from The Official Asymptote Gallery */ real margin=1.5mm; object left=align(object("$x^2$",ellipse,margin),W); add(left); object right=align(object("$\sin x$",ellipse,margin),4E); add(right); add(new void(frame f, transform t) { draw(f,point(left,NE,t)--point(right,W,t)); });
![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
/* This code comes from The Official Asymptote Gallery */ import graph; real Freq=60.0; real margin=5mm; pair exp(pair x) { return exp(x.x)*(cos(x.y)+I*sin(x.y)); } real Merr(real x, real w) { real tau=x/(2*Freq); return 20*log(abs((tau*w+tau/(exp(I*2*pi*Freq*tau)-1))*(I*2*pi*Freq))); } real Aerr(real x, real w) { real tau=x/(2*Freq); return degrees((tau*w+tau/(exp(I*2*pi*Freq*tau)-1))*(I*2*pi*Freq)); } picture pic1; scale(pic1,Log,Linear); real Merr1(real x){return Merr(x,1);} draw(pic1,graph(pic1,Merr1,1e-4,1),black+1.2); ylimits(pic1,-60,20); yaxis(pic1,"magnitude (dB)",LeftRight,RightTicks(new real[] {-60,-40,-20,0,20})); xaxis(pic1,"$f/f_\mathrm{Ny}$",BottomTop,LeftTicks(N=5)); yequals(pic1,0,Dotted); yequals(pic1,-20,Dotted); yequals(pic1,-40,Dotted); xequals(pic1,1e-3,Dotted); xequals(pic1,1e-2,Dotted); xequals(pic1,1e-1,Dotted); size(pic1,100,100,point(pic1,SW),point(pic1,NE)); label(pic1,"$\theta=1$",point(pic1,N),2N); frame f1=pic1.fit(); add(f1); picture pic1p; scale(pic1p,Log,Linear); real Aerr1(real x){return Aerr(x,1);} draw(pic1p,graph(pic1p,Aerr1,1e-4,1),black+1.2); ylimits(pic1p,-5,95); yaxis(pic1p,"phase (deg)",LeftRight,RightTicks(new real[] {0,45,90})); xaxis(pic1p,"$f/f_\mathrm{Ny}$",BottomTop,LeftTicks(N=5)); yequals(pic1p,0,Dotted); yequals(pic1p,45,Dotted); yequals(pic1p,90,Dotted); xequals(pic1p,1e-3,Dotted); xequals(pic1p,1e-2,Dotted); xequals(pic1p,1e-1,Dotted); size(pic1p,100,100,point(pic1p,SW),point(pic1p,NE)); frame f1p=pic1p.fit(); f1p=shift(0,min(f1).y-max(f1p).y-margin)*f1p; add(f1p); picture pic2; scale(pic2,Log,Linear); real Merr2(real x){return Merr(x,0.75);} draw(pic2,graph(pic2,Merr2,1e-4,1),black+1.2); ylimits(pic2,-60,20); yaxis(pic2,"magnitude (dB)",LeftRight,RightTicks(new real[] {-60,-40,-20,0,20})); xaxis(pic2,"$f/f_\mathrm{Ny}$",BottomTop,LeftTicks(N=5)); yequals(pic2,0,Dotted); yequals(pic2,-20,Dotted); yequals(pic2,-40,Dotted); xequals(pic2,1e-3,Dotted); xequals(pic2,1e-2,Dotted); xequals(pic2,1e-1,Dotted); size(pic2,100,100,point(pic2,SW),point(pic2,NE)); label(pic2,"$\theta=0.75$",point(pic2,N),2N); frame f2=pic2.fit(); f2=shift(max(f1).x-min(f2).x+margin)*f2; add(f2); picture pic2p; scale(pic2p,Log,Linear); real Aerr2(real x){return Aerr(x,0.75);} draw(pic2p,graph(pic2p,Aerr2,1e-4,1),black+1.2); ylimits(pic2p,-5,95); yaxis(pic2p,"phase (deg)",LeftRight,RightTicks(new real[] {0,45.1,90})); xaxis(pic2p,"$f/f_\mathrm{Ny}$",BottomTop,LeftTicks(N=5)); yequals(pic2p,0,Dotted); yequals(pic2p,45,Dotted); yequals(pic2p,90,Dotted); xequals(pic2p,1e-3,Dotted); xequals(pic2p,1e-2,Dotted); xequals(pic2p,1e-1,Dotted); size(pic2p,100,100,point(pic2p,SW),point(pic2p,NE)); frame f2p=pic2p.fit(); f2p=shift(max(f1p).x-min(f2p).x+margin,min(f2).y-max(f2p).y-margin)*f2p; add(f2p);
![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
/* This code comes from The Official Asymptote Gallery */ import graph; import palette; int n=256; pen[] Palette=BWRainbow(); real w(real w0, real z0, real z) {return w0*sqrt(1+(z/z0)^2);} real pot(real lambda, real w0, real r, real z) { real z0=pi*w0^2/lambda, kappa=2pi/lambda; return exp(-2*(r/w(w0,z0,z))^2)*cos(kappa*z)^2; } picture make_field(real lambda, real w0) { real[][] v=new real[n][n]; for(int i=0; i < n; ++i) for(int j=0; j < n; ++j) v[i][j]=pot(lambda,w0,i-n/2,abs(j-n/2)); picture p=new picture; size(p,250,250,IgnoreAspect); real xm=-n/lambda, ym=-n/(2*w0), xx=n/lambda, yx=n/(2*w0); image(p,v,(xm,ym),(xx,yx),Palette); xlimits(p,xm,xx); ylimits(p,ym,yx); xaxis(p,"{\Large $z/\frac{\lambda}{2}$}",BottomTop,LeftTicks); yaxis(p,"{\Large $r/w_0$}",LeftRight,RightTicks); label(p,format("{\LARGE $w_0/\lambda=%.2f$}",w0/lambda),point(p,NW),5N); return p; } picture p=make_field(160,80); picture q=make_field(80,80); picture r=make_field(16,80); picture s=make_field(2,80); real margin=1cm; add(p.fit(),(0,0),margin*NW); add(q.fit(),(0,0),margin*NE); add(r.fit(),(0,0),margin*SW); add(s.fit(),(0,0),margin*SE);
![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
/* This code comes from The Official Asymptote Gallery */ picture pic1; real size=50; size(pic1,size); fill(pic1,(0,0)--(50,100)--(100,0)--cycle,red); picture pic2; size(pic2,size); fill(pic2,unitcircle,green); picture pic3; size(pic3,size); fill(pic3,unitsquare,blue); picture pic; add(pic,pic1.fit(),(0,0),N); add(pic,pic2.fit(),(0,0),10S); add(pic.fit(),(0,0),N); add(pic3.fit(),(0,0),10S);