![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
size(8cm,0,false); import graph; xlimits(0, 200); ylimits(-50, 50); yaxis("y-value"); xaxis("x-value");
Compétitivité-Qualité-Fiabilité-Disponibilité
![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
size(8cm,0); import graph; xlimits( -3pi, 3pi); ylimits( -5, 5); yaxis( "y" , LeftRight(), RightTicks(pTick=.8red, ptick=lightgrey, extend=true)); xaxis( "x-value", BottomTop(), Ticks(Label("$%.2f$",red), Step=2pi, step=pi/5, pTick=.8red, ptick=lightgrey, extend=true));
![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
import graph; unitsize(x=1cm); real f(real x){return x;} xlimits( -3, 3); ylimits( -3, 3); draw(graph(f,-3,3)); xaxis(Label("$x$",position=EndPoint, align=SE),Ticks("%",extend=true), Arrow); yaxis(Label("$y$",position=EndPoint, align=NW),Ticks("%",extend=true), Arrow); labelx(1,2S); labely(1,2W); labelx("$O$",0,SE); dot((0,0));
![]() |
|
(Compiled with Asymptote version 1.84svn-r4619) |
unitsize(x=1cm); import graph; xlimits( -3, 2); ylimits( -3, 3); xaxis(xmin=-3, xmax=2,Ticks("%")); yaxis(ymin=-3, ymax=3, Ticks("%")); labelx(1,2S); labely(1,2W); labelx("$O$",0,SW); dot((0,0)); draw(Label("$x$",position=Relative(1),align=2S),(currentpicture.userMin().x-1,0)--(currentpicture.userMax().x+1,0),Arrow); draw(Label("$y$",position=Relative(1),align=2W),(0,currentpicture.userMin().y-1)--(0,currentpicture.userMax().y+1),Arrow);
![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
import graph; unitsize(1cm); xlimits( -3, 2); ylimits( -3, 3); xaxis("$x$", Ticks(ticklabel=OmitFormat(-2,-1,2), modify=NoZero, 1bp+red, end=false), arrow=Arrow); yaxis("$y$", Ticks(ticklabel=OmitFormat(-2,-1,2,3), modify=NoZero, 1bp+red, end=false), arrow=Arrow); labelx(scale(.75)*"$O$",0,SW);
![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
import graph; unitsize(x=1cm, y=1.5cm); xlimits( -3, 2); ylimits( -2, 2); xaxis(BottomTop, Ticks("%",extend=true, ptick=lightgrey)); yaxis(LeftRight, Ticks("%",extend=true, ptick=lightgrey)); xequals(Label("$y$",align=2NW),0,ymin=-2.5, ymax=2.5, p=linewidth(1.5pt), Arrow(2mm)); yequals(Label("$x$",align=2SE),0,xmin=-3.5, xmax=2.5, p=linewidth(1.5pt), Arrow(2mm)); labelx(Label("$1$",UnFill), 1); labely(Label("$1$",UnFill), 1); labelx("$O$",0,SW); dot((0,0));
![]() |
|
(Compiled with Asymptote version 1.84svn-r4619) |
import graph; void graphicrules(picture pic=currentpicture, string prefix=defaultfilename, real unit=1cm, real xunit=unit != 0 ? unit : 0, real yunit=unit != 0 ? unit : 0, real xmin, real xmax, real ymin, real ymax) { xlimits(xmin, xmax); ylimits(ymin, ymax); unitsize(x=xunit, y=yunit); } void grid(picture pic=currentpicture, real xmin=pic.userMin().x, real xmax=pic.userMax().x, real ymin=pic.userMin().y, real ymax=pic.userMax().y, real xStep=1, real xstep=.5, real yStep=1, real ystep=.5, pen pTick=nullpen, pen ptick=grey, bool above=false) { draw(pic,box((xmin,ymin),(xmax,ymax)),invisible); xaxis(pic, BottomTop, xmin, xmax, Ticks("%",extend=true,Step=xStep,step=xstep,pTick=pTick,ptick=ptick), above=above); yaxis(pic, LeftRight, ymin, ymax, Ticks("%",extend=true,Step=yStep,step=ystep,pTick=pTick,ptick=ptick), above=above); } void cartesianaxis(picture pic=currentpicture, Label Lx=Label("$x$",align=S), Label Ly=Label("$y$",align=W), real xmin=pic.userMin().x, real xmax=pic.userMax().x, real ymin=pic.userMin().y, real ymax=pic.userMax().y, real extrawidth=1, real extraheight=extrawidth, pen p=currentpen, ticks xticks=Ticks("%",pTick=nullpen, ptick=grey), ticks yticks=Ticks("%",pTick=nullpen, ptick=grey), bool above=true, arrowbar arrow=Arrow) { extraheight= cm*extraheight/(2*pic.yunitsize); extrawidth = cm*extrawidth/(2*pic.xunitsize); yequals(pic, Lx, 0, xmin-extrawidth, xmax+extrawidth, p, above, arrow=arrow); xequals(pic, Ly, 0, ymin-extraheight, ymax+extraheight, p, above, arrow=arrow); yequals(pic, 0, xmin, xmax, p, xticks, above); xequals(pic, 0, ymin, ymax, p, yticks, above); } void labeloij(picture pic=currentpicture, Label Lo=Label("$O$",NoFill), Label Li=Label("$\vec{\imath}$",NoFill), Label Lj=Label("$\vec{\jmath}$",NoFill), pair diro=SW, pair diri=S, pair dirj=W, pen p=scale(2)*currentpen, filltype filltype=NoFill, arrowbar arrow=Arrow(2mm)) { if (Lo.filltype==NoFill) Lo.filltype=filltype; if (Li.filltype==NoFill) Li.filltype=filltype; if (Lj.filltype==NoFill) Lj.filltype=filltype; labelx(pic, Lo, 0, diro, p); draw(pic, Li, (0,0)--(1,0), diri, p, arrow); draw(pic, Lj, (0,0)--(0,1), dirj, p, arrow); dot(pic, (0,0), dotsize(p)+p); } //The figure starts here graphicrules(yunit=1.5cm, xmin=-3, xmax=3, ymin=-2, ymax=2); grid(); cartesianaxis(arrow=None); labeloij(UnFill);
![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
//Author: John Bowman import graph; size(2cm, 0); xlimits(0, 100); ylimits(-50, 50); yaxis( "y-value" ,Left, Courier("m", "n") + fontsize(12), RightTicks("%.4g"));
![]() |
|
(Compiled with Asymptote version 1.92svn-r4817) |
// From documentation of Asymptote import graph; import palette; import contour; texpreamble("\usepackage{icomma}"); size(10cm,10cm,IgnoreAspect); pair a=(0,0); pair b=(5,10); real fz(pair z) { return z.x*z.y*exp(-z.x); } real f(real x, real y) {return fz((x,y));} int N=200; int Divs=10; int divs=2; defaultpen(1bp); pen Tickpen=black; pen tickpen=gray+0.5*linewidth(currentpen); pen[] Palette=BWRainbow(); scale(false); bounds range=image(f,Automatic,a,b,N,Palette); xaxis("$x$",BottomTop,LeftTicks(pTick=grey, ptick=invisible, extend=true)); yaxis("$y$",LeftRight,RightTicks(pTick=grey, ptick=invisible, extend=true)); // Major contours real[] Cvals; Cvals=sequence(11)/10 * (range.max-range.min) + range.min; draw(contour(f,a,b,Cvals,N,operator ..),Tickpen); // Minor contours real[] cvals; real[] sumarr=sequence(1,divs-1)/divs * (range.max-range.min)/Divs; for (int ival=0; ival < Cvals.length-1; ++ival) cvals.append(Cvals[ival]+sumarr); draw(contour(f,a,b,cvals,N,operator ..),tickpen); palette("$f(x,y)=xye^{-x}$",range,point(NW)+(0,1),point(NE)+(0,0.25),Top,Palette, PaletteTicks(N=Divs,n=divs,Tickpen,tickpen));
![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
import graph_pi; graphicrules(yunit=1.5cm, xmin=-3, xmax=3, ymin=-2, ymax=2); grid(pic=currentpicture, xmin=-3, xmax=3, ymin=-2, ymax=2, xStep=1, xstep=.1, yStep=1, ystep=.1, pTick=.8red, ptick=.8green, above=false); cartesianaxis(pic=currentpicture, Lx=Label(scale(2)*"$x$",align=NW), Ly=Label("$y$",align=SE), xmin=-3, xmax=3, ymin=-2, ymax=2, extrawidth=5, extraheight=5, p=currentpen, xticks=Ticks("%",pTick=1mm+yellow, ptick=grey), yticks=NoTicks, viewxaxis=true, viewyaxis=false, above=true, arrow=Arrow); labeloIJ(pic=currentpicture, Lo=Label("$O$",NoFill), LI=Label("$I$",white,Fill(black)), LJ=Label(" "), diro=NE, dirI=N, dirJ=E, p=blue, filltype=NoFill, marker=dot(2mm+red));
![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
import graph_pi; size(200,0); graphicrules(xmin=-1, xmax=4, ymin=-1, ymax=3); grid(xstep=0,ystep=0); cartesianaxis(xticks=Ticks(Label(Fill(white)), NoZero, ptick=invisible), yticks=Ticks(Label(Fill(white)), NoZero, ptick=invisible)); labelx("$O$",0,SW); shipout(bbox(Fill(white)));
![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
/* This code comes from The Official Asymptote Gallery */ import graph; texpreamble("\def\Arg{\mathop {\rm Arg}\nolimits}"); size(10cm,5cm,IgnoreAspect); real ampl(real x) {return 2.5/(1+x^2);} real phas(real x) {return -atan(x)/pi;} scale(Log,Log); draw(graph(ampl,0.01,10)); ylimits(0.001,100); xaxis("$\omega\tau_0$",BottomTop,LeftTicks); yaxis("$|G(\omega\tau_0)|$",Left,RightTicks); picture q=secondaryY(new void(picture pic) { scale(pic,Log,Linear); draw(pic,graph(pic,phas,0.01,10),red); ylimits(pic,-1.0,1.5); yaxis(pic,"$\Arg G/\pi$",Right,red, LeftTicks("$% #.1f$", begin=false,end=false)); yequals(pic,1,Dotted); }); label(q,"(1,0)",Scale(q,(1,0)),red); add(q);
![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
/* This code comes from The Official Asymptote Gallery */ import graph; real Freq=60.0; real margin=5mm; pair exp(pair x) { return exp(x.x)*(cos(x.y)+I*sin(x.y)); } real Merr(real x, real w) { real tau=x/(2*Freq); return 20*log(abs((tau*w+tau/(exp(I*2*pi*Freq*tau)-1))*(I*2*pi*Freq))); } real Aerr(real x, real w) { real tau=x/(2*Freq); return degrees((tau*w+tau/(exp(I*2*pi*Freq*tau)-1))*(I*2*pi*Freq)); } picture pic1; scale(pic1,Log,Linear); real Merr1(real x){return Merr(x,1);} draw(pic1,graph(pic1,Merr1,1e-4,1),black+1.2); ylimits(pic1,-60,20); yaxis(pic1,"magnitude (dB)",LeftRight,RightTicks(new real[] {-60,-40,-20,0,20})); xaxis(pic1,"$f/f_\mathrm{Ny}$",BottomTop,LeftTicks(N=5)); yequals(pic1,0,Dotted); yequals(pic1,-20,Dotted); yequals(pic1,-40,Dotted); xequals(pic1,1e-3,Dotted); xequals(pic1,1e-2,Dotted); xequals(pic1,1e-1,Dotted); size(pic1,100,100,point(pic1,SW),point(pic1,NE)); label(pic1,"$\theta=1$",point(pic1,N),2N); frame f1=pic1.fit(); add(f1); picture pic1p; scale(pic1p,Log,Linear); real Aerr1(real x){return Aerr(x,1);} draw(pic1p,graph(pic1p,Aerr1,1e-4,1),black+1.2); ylimits(pic1p,-5,95); yaxis(pic1p,"phase (deg)",LeftRight,RightTicks(new real[] {0,45,90})); xaxis(pic1p,"$f/f_\mathrm{Ny}$",BottomTop,LeftTicks(N=5)); yequals(pic1p,0,Dotted); yequals(pic1p,45,Dotted); yequals(pic1p,90,Dotted); xequals(pic1p,1e-3,Dotted); xequals(pic1p,1e-2,Dotted); xequals(pic1p,1e-1,Dotted); size(pic1p,100,100,point(pic1p,SW),point(pic1p,NE)); frame f1p=pic1p.fit(); f1p=shift(0,min(f1).y-max(f1p).y-margin)*f1p; add(f1p); picture pic2; scale(pic2,Log,Linear); real Merr2(real x){return Merr(x,0.75);} draw(pic2,graph(pic2,Merr2,1e-4,1),black+1.2); ylimits(pic2,-60,20); yaxis(pic2,"magnitude (dB)",LeftRight,RightTicks(new real[] {-60,-40,-20,0,20})); xaxis(pic2,"$f/f_\mathrm{Ny}$",BottomTop,LeftTicks(N=5)); yequals(pic2,0,Dotted); yequals(pic2,-20,Dotted); yequals(pic2,-40,Dotted); xequals(pic2,1e-3,Dotted); xequals(pic2,1e-2,Dotted); xequals(pic2,1e-1,Dotted); size(pic2,100,100,point(pic2,SW),point(pic2,NE)); label(pic2,"$\theta=0.75$",point(pic2,N),2N); frame f2=pic2.fit(); f2=shift(max(f1).x-min(f2).x+margin)*f2; add(f2); picture pic2p; scale(pic2p,Log,Linear); real Aerr2(real x){return Aerr(x,0.75);} draw(pic2p,graph(pic2p,Aerr2,1e-4,1),black+1.2); ylimits(pic2p,-5,95); yaxis(pic2p,"phase (deg)",LeftRight,RightTicks(new real[] {0,45.1,90})); xaxis(pic2p,"$f/f_\mathrm{Ny}$",BottomTop,LeftTicks(N=5)); yequals(pic2p,0,Dotted); yequals(pic2p,45,Dotted); yequals(pic2p,90,Dotted); xequals(pic2p,1e-3,Dotted); xequals(pic2p,1e-2,Dotted); xequals(pic2p,1e-1,Dotted); size(pic2p,100,100,point(pic2p,SW),point(pic2p,NE)); frame f2p=pic2p.fit(); f2p=shift(max(f1p).x-min(f2p).x+margin,min(f2).y-max(f2p).y-margin)*f2p; add(f2p);
![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
/* This code comes from The Official Asymptote Gallery */ import graph; size(200,150,IgnoreAspect); // Break the x axis at 3; restart at 8: real a=3, b=8; // Break the y axis at 100; restart at 1000: real c=100, d=1000; scale(Broken(a,b),BrokenLog(c,d)); real[] x={1,2,4,6,10}; real[] y=x^4; draw(graph(x,y),red,MarkFill[0]); xaxis("$x$",BottomTop,LeftTicks(Break(a,b))); yaxis("$y$",LeftRight,RightTicks(Break(c,d))); label(rotate(90)*Break,(a,point(S).y)); label(rotate(90)*Break,(a,point(N).y)); label(Break,(point(W).x,ScaleY(c))); label(Break,(point(E).x,ScaleY(c)));
![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
/* This code comes from The Official Asymptote Gallery */ import graph; size(15cm,12cm,IgnoreAspect); real minpercent=20; real ignorebelow=0; string data="diatom.csv"; string[] group; int[] begin,end; defaultpen(fontsize(8pt)+overwrite(MoveQuiet)); file in=input(data).line().csv(); string depthlabel=in; string yearlabel=in; string[] taxa=in; group=in; begin=in; real[] depth; int[] year; real[][] percentage; while(true) { real d=in; if(eof(in)) break; depth.push(d); year.push(in); percentage.push(in); } percentage=transpose(percentage); real depthmin=-min(depth); real depthmax=-max(depth); int n=percentage.length; int final; for(int taxon=0; taxon < n; ++taxon) { real[] P=percentage[taxon]; if(max(P) < ignorebelow) continue; final=taxon; } real angle=45; real L=3cm; pair Ldir=L*dir(angle); real ymax=-infinity; real margin=labelmargin(); real location=0; for(int i=0; i < begin.length-1; ++i) end[i]=begin[i+1]-1; end[begin.length-1]=n-1; typedef void drawfcn(frame f); drawfcn[] draw=new drawfcn[begin.length]; pair z0; for(int taxon=0; taxon < n; ++taxon) { real[] P=percentage[taxon]; real maxP=max(P); if(maxP < ignorebelow) continue; picture pic; real x=1; if(maxP < minpercent) x=minpercent/maxP; if(maxP > 100) x=50/maxP; scale(pic,Linear(true,x),Linear(-1)); filldraw(pic,(0,depthmin)--graph(pic,P,depth)--(0,depthmax)--cycle, gray(0.9)); xaxis(pic,Bottom,LeftTicks("$%.3g$",beginlabel=false,0,2),above=true); xaxis(pic,Top,above=true); frame label; label(label,rotate(angle)*TeXify(taxa[taxon]),(0,0),N); pair z=point(pic,N); pair v=max(label); int taxon=taxon; pic.add(new void(frame f, transform t) { pair z1=t*z+v; ymax=max(ymax,z1.y+margin); }); for(int i=0; i < begin.length; ++i) { pair z=point(pic,N); pair v=max(label); if(taxon == begin[i]) { pic.add(new void(frame f, transform t) { pair Z=t*z+v; z0=Z; pair w0=Z+Ldir; }); } else if(taxon == end[i]) { int i=i; pair align=2N; pic.add(new void(frame, transform t) { pair z0=z0; pair z1=t*z+v; pair w1=z1+Ldir; draw[i]=new void(frame f) { path g=z0--(z0.x+(ymax-z0.y)/Tan(angle),ymax)-- (z1.x+(ymax-z1.y)/Tan(angle),ymax)--z1; draw(f,g); label(f,group[i],point(g,1.5),align); }; }); } } add(pic,label,point(pic,N)); if(taxon == 0) yaxis(pic,depthlabel,Left,RightTicks(0,10),above=true); if(taxon == final) yaxis(pic,Right,LeftTicks("%",0,10),above=true); add(shift(location,0)*pic); location += pic.userMax().x; } add(new void(frame f, transform) { for(int i=0; i < draw.length; ++i) draw[i](f); }); for(int i=0; i < year.length; ++i) if(year[i] != 0) label((string) year[i],(location,-depth[i]),E); label("\%",(0.5*location,point(S).y),5*S);
![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
/* This code comes from The Official Asymptote Gallery */ import graph; size(0,100); path g=ellipse((0,0),1,2); scale(true); axis(Label("C",align=10W),g,LeftTicks(endlabel=false,8,end=false), ticklocate(0,360,new real(real v) { path h=(0,0)--max(abs(max(g)),abs(min(g)))*dir(v); return intersect(g,h)[0];}));
![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
/* This code comes from The Official Asymptote Gallery */ import graph3; size(0,100); path3 g=yscale3(2)*unitcircle3; currentprojection=perspective(10,10,10); axis(Label("C",position=0,align=15X),g,InTicks(endlabel=false,8,end=false), ticklocate(0,360,new real(real v) { path3 h=O--max(abs(max(g)),abs(min(g)))*dir(90,v); return intersect(g,h)[0];}, new triple(real t) {return cross(dir(g,t),Z);}));
![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
/* This code comes from The Official Asymptote Gallery */ size(400,200,IgnoreAspect); import graph; import stats; file fin=input("leastsquares.dat").line(); real[][] a=fin.dimension(0,0); a=transpose(a); real[] t=a[0], rho=a[1]; // Read in parameters from the keyboard: //real first=getreal("first"); //real step=getreal("step"); //real last=getreal("last"); real first=100; real step=50; real last=700; // Remove negative or zero values of rho: t=rho > 0 ? t : null; rho=rho > 0 ? rho : null; scale(Log(true),Linear(true)); int n=step > 0 ? ceil((last-first)/step) : 0; real[] T,xi,dxi; for(int i=0; i <= n; ++i) { real first=first+i*step; real[] logrho=(t >= first & t <= last) ? log(rho) : null; real[] logt=(t >= first & t <= last) ? -log(t) : null; if(logt.length < 2) break; // Fit to the line logt=L.m*logrho+L.b: linefit L=leastsquares(logt,logrho); T.push(first); xi.push(L.m); dxi.push(L.dm); } draw(graph(T,xi),blue); errorbars(T,xi,dxi,red); crop(); ylimits(0); xaxis("$T$",BottomTop,LeftTicks); yaxis("$\xi$",LeftRight,RightTicks);
![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
/* This code comes from The Official Asymptote Gallery */ size(200,200,IgnoreAspect); import graph; real L=1; real epsilon=0.25; real a(int n) {return L+1/n;} for(int i=1; i < 20; ++i) dot((i,a(i))); real N=1/epsilon; xaxis(Label("$n$",align=2S)); yaxis(Label("$a_n$",0.85)); xtick("$2$",2); ytick("$\frac{3}{2}$",3/2); ytick("$2$",2); yequals(Label("$L$",0,up),L,extend=true,blue); yequals(Label("$L+\epsilon$",1,NW),L+epsilon,extend=true,red+dashed); yequals(Label("$L-\epsilon$",1,SW),L-epsilon,extend=true,red+dashed); xequals(N,extend=true,darkgreen+dashed); labelx(shift(0,-10)*"$N=\frac{1}{\epsilon}$",N,E,darkgreen); label("$a_n=1+\frac{1}{n},\quad \epsilon=\frac{1}{4}$",point((0,1)),10S+E);
![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
/* This code comes from The Official Asymptote Gallery */ import lmfit; import graph; size(10cm, 7cm, IgnoreAspect); real[] date = { 1790, 1800, 1810, 1820, 1830, 1840, 1850, 1860, 1870, 1880, 1890, 1900, 1910, 1920, 1930, 1940, 1950, 1960, 1970, 1980, 1990 }; real[] population = { 3.929, 5.308, 7.240, 9.638, 12.866, 17.069, 23.192, 31.443, 38.558, 50.156, 62.948, 75.996, 91.972, 105.711, 122.775, 131.669, 150.697, 179.323, 203.185, 226.546, 248.710 }; real t0 = 1776; real P(real[] params, real t) { real P0 = params[0]; real K = params[1]; real r = params[2]; return (K * P0) / (P0 + (K - P0) * exp(-r * (t - t0))); } real[] params = { 10, 500, 0.1 }; real res = lmfit.fit(date, population, P, params).norm; write("P_0 = ", params[0]); write("K = ", params[1]); write("r = ", params[2]); write("error = ", res); real P(real t) { return P(params, t); } draw(graph(date, population), blue); draw(graph(P, t0, 2000), red); xaxis("Year", BottomTop, LeftTicks); yaxis("Population in millions", LeftRight, RightTicks);
![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
/* This code comes from The Official Asymptote Gallery */ import graph; size(200,IgnoreAspect); // Base-2 logarithmic scale on y-axis: real log2(real x) {static real log2=log(2); return log(x)/log2;} real pow2(real x) {return 2^x;} scaleT yscale=scaleT(log2,pow2,logarithmic=true); scale(Linear,yscale); real f(real x) {return 1+x^2;} draw(graph(f,-4,4)); yaxis("$y$",ymin=1,ymax=f(5),RightTicks(Label(Fill(white))),EndArrow); xaxis("$x$",xmin=-5,xmax=5,LeftTicks,EndArrow);
![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
/* This code comes from The Official Asymptote Gallery */ import graph; size(200,IgnoreAspect); real log10Down(real x) {return -log10(x);} real pow10Down(real x) {return pow10(-x);} scaleT LogDown=scaleT(log10Down,pow10Down,logarithmic=true); scale(Linear,LogDown); draw(graph(exp,-5,5)); yaxis("$y$",RightTicks(Label(Fill(white)),DefaultLogFormat),BeginArrow); xaxis("$x$",LeftTicks(NoZero),EndArrow);
![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
/* This code comes from The Official Asymptote Gallery */ import graph; size(200,200,IgnoreAspect); real f(real t) {return 1/t;} scale(Log,Log); draw(graph(f,0.1,10)); //xlimits(1,10,Crop); //ylimits(0.1,1,Crop); dot(Label("(3,5)",align=S),Scale((3,5))); xaxis("$x$",BottomTop,LeftTicks); yaxis("$y$",LeftRight,RightTicks);
![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
/* This code comes from The Official Asymptote Gallery */ import graph; size(200,200,IgnoreAspect); real f(real t) {return 1/t;} scale(Log,Log); draw(graph(f,0.1,10),red); pen thin=linewidth(0.5*linewidth()); xaxis("$x$",BottomTop,LeftTicks(begin=false,end=false,extend=true, ptick=thin)); yaxis("$y$",LeftRight,RightTicks(begin=false,end=false,extend=true, ptick=thin));
![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
/* This code comes from The Official Asymptote Gallery */ import graph; size(300,175,IgnoreAspect); scale(Log,Log); draw(graph(identity,5,20)); xlimits(5,20); ylimits(1,100); xaxis("$M/M_\odot$",BottomTop,LeftTicks(DefaultFormat, new real[] {6,10,12,14,16,18})); yaxis("$\nu_{\rm upp}$ [Hz]",LeftRight,RightTicks(DefaultFormat));
![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
/* This code comes from The Official Asymptote Gallery */ import graph; size(10cm,0); real xmin=-4,xmax=4; real ymin=-2,ymax=10; real f(real x) {return x^2;} marker cross=marker(scale(4)*rotate(45)*cross(4), markuniform(new pair(real t) {return Scale((t,f(t)));}, xmin,xmax,round(2*(xmax-xmin))),1bp+red); draw(graph(f,xmin,xmax,n=400),linewidth(1bp),cross); ylimits(-2.5,10,Crop); xaxis(Label("$x$",position=EndPoint, align=NE),xmin=xmin,xmax=xmax, Ticks(scale(.7)*Label(align=E),NoZero,begin=false,beginlabel=false, end=false,endlabel=false,Step=1,step=.25, Size=1mm, size=.5mm,pTick=black,ptick=gray),Arrow); yaxis(Label("$y$",position=EndPoint, align=NE),ymin=ymin,ymax=ymax, Ticks(scale(.7)*Label(),NoZero,begin=false,beginlabel=false, end=false,endlabel=false,Step=1,step=.25,Size=1mm,size=.5mm, pTick=black,ptick=gray),Arrow);
![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
/* This code comes from The Official Asymptote Gallery */ import graph; size(400,150,IgnoreAspect); real[] x=sequence(12); real[] y=sin(2pi*x/12); scale(false); string[] month={"Jan","Feb","Mar","Apr","May","Jun", "Jul","Aug","Sep","Oct","Nov","Dec"}; draw(graph(x,y),red,MarkFill[0]); xaxis(BottomTop,LeftTicks(new string(real x) { return month[round(x % 12)];})); yaxis("$y$",LeftRight,RightTicks(4));
![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
/* This code comes from The Official Asymptote Gallery */ import graph; axiscoverage=0.9; size(200,IgnoreAspect); real[] x={-1e-11,1e-11}; real[] y={0,1e6}; real xscale=round(log10(max(x))); real yscale=round(log10(max(y)))-1; draw(graph(x*10^(-xscale),y*10^(-yscale)),red); xaxis("$x/10^{"+(string) xscale+"}$",BottomTop,LeftTicks); yaxis("$y/10^{"+(string) yscale+"}$",LeftRight,RightTicks(trailingzero));
![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
/* This code comes from The Official Asymptote Gallery */ import graph; size(9cm,6cm,IgnoreAspect); string data="secondaryaxis.csv"; file in=input(data).line().csv(); string[] titlelabel=in; string[] columnlabel=in; real[][] a=in.dimension(0,0); a=transpose(a); real[] t=a[0], susceptible=a[1], infectious=a[2], dead=a[3], larvae=a[4]; real[] susceptibleM=a[5], exposed=a[6],infectiousM=a[7]; scale(true); draw(graph(t,susceptible,t >= 10 & t <= 15)); draw(graph(t,dead,t >= 10 & t <= 15),dashed); xaxis("Time ($\tau$)",BottomTop,LeftTicks); yaxis(Left,RightTicks); picture secondary=secondaryY(new void(picture pic) { scale(pic,Linear(true),Log(true)); draw(pic,graph(pic,t,infectious,t >= 10 & t <= 15),red); yaxis(pic,Right,red,LeftTicks(begin=false,end=false)); }); add(secondary); label(shift(5mm*N)*"Proportion of crows",point(NW),E);