![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
size(6cm,0); path [] c; c[1] = xscale(2)*unitcircle; c[2] = shift((0,1))*c[1]; draw(c[1]^^c[2]); draw(buildcycle(c[1],c[2]), .8red+4bp);
Compétitivité-Qualité-Fiabilité-Disponibilité
![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
//Translate from http://zoonek.free.fr/LaTeX/Metapost/metapost.html size(6cm,0); path a,b,c,d; a = (-1,-.2){up} .. tension 1.2 .. (1,-.2){down}; transform r90=rotate(90); b = r90*a; c = r90*b; d = r90*c; path bound=buildcycle(a,b,c,d); fill(bound, lightgrey); draw(a^^b^^c^^d,grey); draw(bound);
![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
size(6cm,0); path a,b,c; a = shift(1,0)*scale(2)*unitcircle; b = rotate(120)*a; c = rotate(120)*b; fill(a, red); fill(b, green); fill(c, blue); fill(buildcycle(a,b), red + green); fill(buildcycle(b,c), green + blue); fill(buildcycle(c,a), blue + red); fill(buildcycle(a,b,c), white); draw(a^^b^^c);
![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
/*One can see this graphe drawed with my package HERE*/ import graph; import patterns; usepackage("mathrsfs"); unitsize(2cm,1.5cm); real xmin=-1,xmax=4; real ymin=-1,ymax=5; // Definition of fonctions f and g : real f(real x) {return 4x-x^2+4/(x^2+1)^2;} real g(real x) {return x-1+4/(x^2+1)^2;} // Trace the curves : path Cf=graph(f,xmin,xmax,n=400); path Cg=graph(g,xmin,xmax,n=400); draw(Cf,linewidth(1bp)); draw(Cg,linewidth(1bp)); xlimits(xmin,xmax,Crop); ylimits(ymin,ymax,Crop); // The grid : xaxis(BottomTop, xmin, xmax, Ticks("%", Step=1, step=0.5, extend=true, ptick=lightgrey)); yaxis(LeftRight, ymin, ymax, Ticks("%", Step=1, step=0.5, extend=true, ptick=lightgrey)); // The axis. xequals(Label("$y$",align=W),0,ymin=ymin-0.25, ymax=ymax+0.25, Ticks(NoZero,pTick=nullpen, ptick=grey), p=linewidth(1pt), Arrow(2mm)); yequals(Label("$x$",align=S),0,xmin=xmin-0.25, xmax=xmax+0.25, Ticks(NoZero,pTick=nullpen, ptick=grey), p=linewidth(1pt), Arrow(2mm)); labelx(Label("$O$",NoFill), 0, SW); draw(Label("$\vec{\imath}$",align=S,UnFill), (0,0)--(1,0),scale(2)*currentpen,Arrow); draw(Label("$\vec{\jmath}$",align=W,UnFill), (0,0)--(0,1),scale(2)*currentpen,Arrow); dot((0,0)); label("$\mathscr{C}_f$",(2.25,f(2.25)),2N); label("$\mathscr{C}_f$",(2.25,g(2.25)),2S); // Les hachures. path vline=(1,-1)--(1,5); add("hachure",hatch(3mm)); fill(buildcycle(vline,graph(f,1,4),graph(g,1,4)),pattern("hachure"));
![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
import graph_pi; import patterns; graphicrules(xunit=2.5cm,yunit=1.5cm, xmin=-1, xmax=4, ymin=-1, ymax=5, crop=Crop); // Définition des fonctions f et g : real f(real x) {return 4x-x^2+4/(x^2+1)^2;} real g(real x) {return x-1+4/(x^2+1)^2;} // Tracé des courbes : path Cf=graph(f,n=700); path Cg=graph(g,n=700); draw(Cf,linewidth(1bp)); draw(Cg,linewidth(1bp)); crop(currentpicture); // La grille. grid(); // Les axes. cartesianaxis(xticks=Ticks(NoZero,ptick=grey), yticks=Ticks(NoZero,ptick=grey),arrow=None); labeloij(UnFill); label("$\mathscr{C}_f$",(2.25,f(2.25)),2N); label("$\mathscr{C}_f$",(2.25,g(2.25)),2S); // Les hachures. path vline=(1,-1)--(1,5); add("hachure",hatch(3mm)); fill(buildcycle(vline,graph(f,1,4),graph(g,1,4)),pattern("hachure"));
![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
/* This code comes from The Official Asymptote Gallery */ size(200); real w=1.35; path[] p; for(int k=0; k < 2; ++k) { int i=2+2*k; int ii=i^2; p[k]=(w/ii,1){1,-ii}::(w/i,1/i)::(w,1/ii){ii,-1}; } path q0=(0,0)--(w,0.5); path q1=(0,0)--(w,1.5); draw(q0); draw(p[0]); draw(q1); draw(p[1]); path s=buildcycle(q0,p[0],q1,p[1]); fill(s,mediumgrey); label("$P$",intersectionpoint(p[0],q0),N); label("$Q$",intersectionpoint(p[0],q1),E); label("$R$",intersectionpoint(p[1],q1),W); label("$S$",intersectionpoint(p[1],q0),S); label("$f > 0$",0.5*(min(s)+max(s)),UnFill);