Asymptote Generalities – fig1890

Category: Asymptote,Examples 2D,GeneralitiesPh. Ivaldi @ 18 h 39 min

 (Compiled with Asymptote version 2.14svn-r5318)

size(6cm,0);
path [] c;

c[1] = xscale(2)*unitcircle;
c[2] = shift((0,1))*c[1];
draw(c[1]^^c[2]);
draw(buildcycle(c[1],c[2]), .8red+4bp);



Étiquettes : , , , , , ,

Asymptote Generalities – fig1900

Category: Asymptote,Examples 2D,GeneralitiesPh. Ivaldi @ 19 h 39 min

 (Compiled with Asymptote version 2.14svn-r5318)

//Translate from http://zoonek.free.fr/LaTeX/Metapost/metapost.html
size(6cm,0);

path a,b,c,d;
a = (-1,-.2){up} .. tension 1.2 .. (1,-.2){down};
transform r90=rotate(90);
b = r90*a;
c = r90*b;
d = r90*c;
path bound=buildcycle(a,b,c,d);
fill(bound, lightgrey);
draw(a^^b^^c^^d,grey);
draw(bound);



Étiquettes : , , , , , ,

Asymptote Generalities – fig1910

Category: Asymptote,Examples 2D,GeneralitiesPh. Ivaldi @ 20 h 39 min

 (Compiled with Asymptote version 2.14svn-r5318)

size(6cm,0);

path a,b,c;
a = shift(1,0)*scale(2)*unitcircle;
b = rotate(120)*a;
c = rotate(120)*b;

fill(a, red);
fill(b, green);
fill(c, blue);
fill(buildcycle(a,b), red + green);
fill(buildcycle(b,c), green + blue);
fill(buildcycle(c,a), blue + red);
fill(buildcycle(a,b,c), white);

draw(a^^b^^c);



Étiquettes : , , , , , ,

Asymptote using graph.asy – fig0220

Category: Asymptote,Examples 2D,graph.asyPh. Ivaldi @ 23 h 10 min

 (Compiled with Asymptote version 2.14svn-r5318)

/*One can see this graphe drawed with my package HERE*/
import graph;
import patterns;
usepackage("mathrsfs");

unitsize(2cm,1.5cm);
real xmin=-1,xmax=4;
real ymin=-1,ymax=5;

// Definition of fonctions f and g :
real f(real x) {return 4x-x^2+4/(x^2+1)^2;}
real g(real x) {return x-1+4/(x^2+1)^2;}

// Trace the curves :
path Cf=graph(f,xmin,xmax,n=400);
path Cg=graph(g,xmin,xmax,n=400);
draw(Cf,linewidth(1bp));
draw(Cg,linewidth(1bp));
xlimits(xmin,xmax,Crop);
ylimits(ymin,ymax,Crop);

// The grid :
xaxis(BottomTop, xmin, xmax, Ticks("%", Step=1, step=0.5, extend=true, ptick=lightgrey));
yaxis(LeftRight, ymin, ymax, Ticks("%", Step=1, step=0.5, extend=true, ptick=lightgrey));
// The axis.
xequals(Label("$y$",align=W),0,ymin=ymin-0.25, ymax=ymax+0.25,
Ticks(NoZero,pTick=nullpen, ptick=grey),
p=linewidth(1pt), Arrow(2mm));
yequals(Label("$x$",align=S),0,xmin=xmin-0.25, xmax=xmax+0.25,
Ticks(NoZero,pTick=nullpen, ptick=grey),
p=linewidth(1pt), Arrow(2mm));

labelx(Label("$O$",NoFill), 0, SW);
draw(Label("$\vec{\imath}$",align=S,UnFill),
(0,0)--(1,0),scale(2)*currentpen,Arrow);
draw(Label("$\vec{\jmath}$",align=W,UnFill),
(0,0)--(0,1),scale(2)*currentpen,Arrow);
dot((0,0));

label("$\mathscr{C}_f$",(2.25,f(2.25)),2N);
label("$\mathscr{C}_f$",(2.25,g(2.25)),2S);

// Les hachures.
path vline=(1,-1)--(1,5);
fill(buildcycle(vline,graph(f,1,4),graph(g,1,4)),pattern("hachure"));



Étiquettes : , , , , ,

Unofficial package graph_pi.asy – fig0060

Category: Asymptote,graph_pi.asy,Unofficial packagesPh. Ivaldi @ 10 h 50 min

 (Compiled with Asymptote version 2.14svn-r5318)

import graph_pi;
import patterns;

graphicrules(xunit=2.5cm,yunit=1.5cm, xmin=-1, xmax=4, ymin=-1, ymax=5,
crop=Crop);

// Définition des fonctions f et g :
real f(real x) {return 4x-x^2+4/(x^2+1)^2;}
real g(real x) {return x-1+4/(x^2+1)^2;}

// Tracé des courbes :
path Cf=graph(f,n=700);
path Cg=graph(g,n=700);
draw(Cf,linewidth(1bp));
draw(Cg,linewidth(1bp));
crop(currentpicture);

// La grille.
grid();
// Les axes.
cartesianaxis(xticks=Ticks(NoZero,ptick=grey),
yticks=Ticks(NoZero,ptick=grey),arrow=None);
labeloij(UnFill);

label("$\mathscr{C}_f$",(2.25,f(2.25)),2N);
label("$\mathscr{C}_f$",(2.25,g(2.25)),2S);

// Les hachures.
path vline=(1,-1)--(1,5);
fill(buildcycle(vline,graph(f,1,4),graph(g,1,4)),pattern("hachure"));



Étiquettes : , ,

Official Asymptote example – buildcycle

Category: Asymptote,Official Gallery One-PagerPh. Ivaldi @ 12 h 57 min

 (Compiled with Asymptote version 2.14svn-r5318)
/* This code comes from The Official Asymptote Gallery */

size(200);

real w=1.35;

path[] p;
for(int k=0; k < 2; ++k) {
int i=2+2*k;
int ii=i^2;
p[k]=(w/ii,1){1,-ii}::(w/i,1/i)::(w,1/ii){ii,-1};
}

path q0=(0,0)--(w,0.5);
path q1=(0,0)--(w,1.5);
draw(q0); draw(p[0]); draw(q1); draw(p[1]);
path s=buildcycle(q0,p[0],q1,p[1]);
fill(s,mediumgrey);

label("$P$",intersectionpoint(p[0],q0),N);
label("$Q$",intersectionpoint(p[0],q1),E);
label("$R$",intersectionpoint(p[1],q1),W);
label("$S$",intersectionpoint(p[1],q0),S);
label("$f > 0$",0.5*(min(s)+max(s)),UnFill);



Étiquettes : ,