![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
// From Asympote's FAQ size(6cm,0); path p=(0,0)--(1,0); frame object; draw(object,scale(3cm)*p); add(object); add(object,(0,-10));
Compétitivité-Qualité-Fiabilité-Disponibilité
![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
// From Asympote's FAQ size(6cm,0); path p=(0,0)--(1,0); frame object; draw(object,scale(3cm)*p); add(object); add(object,(0,-10));
![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
// Author: John Bowman size(0,100); real margin=2mm; pair z1=(0,1); pair z0=(0,0); object label1=draw("small box",box,z1,margin); object label0=draw("LARGE ELLIPSE",ellipse,z0,margin); add(new void(frame f, transform t) { draw(f,point(label1,S,t)--point(label0,N,t)); });
![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
import geometry; size(10cm); point F=(2,-1.5); dot("$F$",F,N,red); // Enlarge the bounding box of the current picture. draw(box((-1,-1),(3,1.5)),dashed);//,invisible); parabola p=parabola(F,0.2,90); // Define the bounding box to draw the parabola. // Try finalbounds(); to determine the final bounding box. p.bmin=(-0.75,-0.4); p.bmax=(2.75,0.75); draw(box(p.bmin,p.bmax),red); draw(p,dashed);/* Defered drawing to adjust the path to the final bounding box.*/ draw((path)p,red); /* The path of 'p' is restricted to the box whose the corners are p.bmin, p.bmax.*/
![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
import geometry; size(10cm,0); // currentcoordsys=cartesiansystem((2,1),i=(1,0.5),j=(-0.25,.75)); // show(currentcoordsys); point F1=(1,0); point F2=(4,1); dot("$F_1$",F1,W); dot("$F_2$",F2); // Enlarge the bounding box of the current picture draw(box((0,-2), (5,4)), invisible); /* View the definition of hyperbola hyperbola(point,point,real,bool) */ hyperbola h=hyperbola(F1, F2, 0.9); draw(h, linewidth(3mm)); draw(h.A1, grey); draw(h.A2, grey); draw(h.D1); draw(h.D2); /* View the definition of hyperbola hyperbola(point,real,real,real) */ draw(hyperbola(h.C, h.a, h.b, h.angle), 2mm+green); /* View the definition of hyperbola hyperbola(bqe) */ draw(hyperbola(equation(h)), 1mm+red); /* View the definition of hyperbola conj(hyperbola) */ hyperbola ch=conj(h); draw(ch, blue); draw(ch.A1, 0.5blue); draw(ch.A2, 0.5blue); draw(ch.D1); draw(ch.D2); dot("${V'}_1$", ch.V1, NE); dot("${V'}_2$", ch.V2, SW); dot("${F'}_1$", ch.F1, S); dot("${F'}_2$", ch.F2, N); dot("$V_1$", h.V1, 2E, linewidth(2mm)); dot("$V_2$", h.V2, 2W, linewidth(2mm));
![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
/* This code comes from The Official Asymptote Gallery */ import graph3; size(469pt); viewportmargin=0; currentprojection=perspective( camera=(25.0851928432063,-30.3337528952473,19.3728775115443), up=Z, target=(-0.590622314050054,0.692357205025578,-0.627122488455679), zoom=1, autoadjust=false); triple f(pair t) { real u=t.x; real v=t.y; real r=2-cos(u); real x=3*cos(u)*(1+sin(u))+r*cos(v)*(u < pi ? cos(u) : -1); real y=8*sin(u)+(u < pi ? r*sin(u)*cos(v) : 0); real z=r*sin(v); return (x,y,z); } surface s=surface(f,(0,0),(2pi,2pi),8,8,Spline); draw(s,lightolive+white,"bottle",render(merge=true)); string lo="$\displaystyle u\in[0,\pi]: \cases{x=3\cos u(1+\sin u)+(2-\cos u)\cos u\cos v,\cr y=8\sin u+(2-\cos u)\sin u\cos v,\cr z=(2-\cos u)\sin v.\cr}$"; string hi="$\displaystyle u\in[\pi,2\pi]:\\\cases{x=3\cos u(1+\sin u)-(2-\cos u)\cos v,\cr y=8\sin u,\cr z=(2-\cos u)\sin v.\cr}$"; real h=0.0125; begingroup3("parametrization"); draw(surface(xscale(-0.38)*yscale(-0.18)*lo,s,0,1.7,h,bottom=false), "[0,pi]"); draw(surface(xscale(0.26)*yscale(0.1)*rotate(90)*hi,s,4.9,1.4,h,bottom=false), "[pi,2pi]"); endgroup3(); begingroup3("boundary"); draw(s.uequals(0),blue+dashed); draw(s.uequals(pi),blue+dashed); endgroup3(); add(new void(frame f, transform3 t, picture pic, projection P) { draw(f,invert(box(min(f,P),max(f,P)),P),"frame"); });
![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
/* This code comes from The Official Asymptote Gallery */ size(12cm,0); void distance(picture pic=currentpicture, pair A, pair B, Label L="", real n=0, pen p=currentpen) { real d=3mm; path g=A--B; transform T=shift(-n*d*unit(B-A)*I); pic.add(new void(frame f, transform t) { picture opic; path G=T*t*g; draw(opic,Label(L,Center,UnFill(1)),G,p,Arrows(NoFill),Bars,PenMargins); add(f,opic.fit()); }); pic.addBox(min(g),max(g),T*min(p),T*max(p)); } pair A=(0,0), B=(3,3); dot(A); dot(B); distance(A,B,"$\ell$",1);
![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
/* This code comes from The Official Asymptote Gallery */ path g=scale(100)*unitcircle; pen p=linewidth(1cm); frame f; // Equivalent to draw(f,g,p): fill(f,strokepath(g,p),red); shipout("strokepathframe",f); shipped=false; size(400); // Equivalent to draw(g,p): add(new void(frame f, transform t) { fill(f,strokepath(t*g,p),red); }); currentpicture.addPath(g,p);