Fractals with Asymptote – fig0010

Category: Asymptote,Examples 2D,FractalsPh. Ivaldi @ 21 h 53 min

Figure 0001
(Compiled with Asymptote version 1.87svn-r4652)
    
// From documentation of Asymptote
size(250);

real a=3;
real b=4;
real c=hypot(a,b);

transform ta=shift(c,c)*rotate(-aCos(a/c))*scale(a/c)*shift(-c);
transform tb=shift(0,c)*rotate(aCos(b/c))*scale(b/c);

picture Pythagorean(int n) {
  picture pic;
  fill(pic,scale(c)*unitsquare,1/(n+1)*green+n/(n+1)*brown);
  if(n == 0) return pic;
  picture branch=Pythagorean(--n);
  add(pic,ta*branch);
  add(pic,tb*branch);
  return pic;
}

add(Pythagorean(12));

Étiquettes : , , , ,


Fractals with Asymptote – fig0020

Category: Asymptote,Examples 2D,FractalsPh. Ivaldi @ 22 h 53 min

Figure 0002
(Compiled with Asymptote version 1.87svn-r4652)
    
size(10cm,0);

transform scale(pair center, real k) {
  return shift(center)*scale(k)*shift(-center);
}

path trk=(0,0)--(0,1);

void tree(path p, int n, real a=30, real b=40, real r=.75) {
  if (n!=0) {
    pair h=point(p,length(p));
    transform tb=rotate(180-b,h)*scale(h,r);
    transform ta=rotate(-180+a,h)*scale(h,r);
    draw(p,n/3+1/(n+1)*green+n/(n+1)*brown);
    tree(tb*reverse(p),n-1,a,b,r);
    tree(ta*reverse(p),n-1,a,b,r);
  }
}

tree(trk,12,a=25,b=40,r=.75);

Étiquettes : , , ,


Fractals with Asymptote – fig0030

Category: Asymptote,Examples 2D,FractalsPh. Ivaldi @ 23 h 53 min

Figure 0003
(Compiled with Asymptote version 1.87svn-r4652)
    
// Barnsley's fern
// Fougère de Barnsley
size(5cm,0);

real ab=85, ac=-5;
real rc=.85, rb=-.31;
path trk=(0,0)--(0,1);

transform ta=shift(0,1)*rotate(ab)*scale(rb);
transform tb=shift(0,1)*rotate(-ab)*scale(rb);
transform tc=shift(0,1)*rotate(ac)*scale(rc);

picture fern(int n) {
  picture opic;
  draw(opic,trk^^ta*trk^^tb*trk^^tc*trk);
  if (n==0) return opic;
  picture branch=fern(n-1);
  add(opic,branch);
  add(opic,ta*branch);
  add(opic,tb*branch);
  add(opic,tc*branch);
  return opic;
}

add(fern(6));

Étiquettes : , , , ,


Fractals with Asymptote – fig0040

Category: Asymptote,Examples 2D,FractalsPh. Ivaldi @ 0 h 53 min

Figure 0004
(Compiled with Asymptote version 1.87svn-r4652)
    
// Barnsley's fern
// Fougère de Barnsley
size(10cm,0);

real ab=72, ac=-7;
real rc=0.85, rb=0.35;
path trk=(0,0)--(0,1);

transform ta=shift(0,1)*rotate(ab)*scale(rb);
transform tb=shift(0,1)*rotate(-ab)*scale(rb);
transform tc=shift(0,1)*rotate(ac)*scale(rc);
transform td=shift(0,1)*rotate((ab+ac)/2)*scale(rb);
transform te=shift(0,1)*rotate(-(ab+ac)/2)*scale(rb);

picture pic;
draw(pic,trk,red+.8green);

//Construct a fern branch as atractor
int nbit=7;
for(int i=1; i<=nbit; ++i) {
  picture pict;
  add(pict,ta*pic);
  add(pict,tb*pic);
  add(pict,tc*pic);
  draw(pict,(0,0)--(0,1), (2*(i/nbit)^2)*bp+((1-i/nbit)*green+i/nbit*brown));
  pic=pict;
}

//Use the fern branch to construct... a fern branch
picture pict;
add(pict,ta*pic);
add(pict,tb*pic);

pair x=(0,1);
nbit=23;
for(int i=1; i<=nbit; ++i) {
  add(shift(x)*rotate(ac*i)*scale(rc^i)*pict);
  draw(tc^i*((0,0)--(0,1)), 2*(1.5-i/nbit)^2*bp+brown);
  x=tc*x;
}

shipout(bbox(3mm, 2mm+black, FillDraw(paleyellow)));

Étiquettes : , ,


Fractals with Asymptote – fig0050

Category: Asymptote,Examples 2D,FractalsPh. Ivaldi @ 1 h 53 min

Figure 0005
(Compiled with Asymptote version 1.87svn-r4652)
    
// Barnsley's fern
// Fougère de Barnsley
size(5cm,0);

real ab=85, ac=-5;
real rc=0.8, rb=0.3;
path trk=(0,0)--(0,1);

transform [] t;
t[1] =shift(0,1)*rotate(ab)*scale(rb);
t[2] =shift(0,1)*rotate(-ab)*scale(rb);
t[3] =shift(0,1)*rotate(ac)*scale(rc);
real sum=0;

for(int i=0; i<100; ++i) sum+=(rc*cos(ac*pi/180))^i;
t[4] =xscale(0.01)*yscale(1/sum);

picture pic;
draw(pic,trk);
pair pt=(0,0);

for(int i=0; i < 1000; ++i) {
  pt=t[ 1+floor((3.0*rand()/randMax)) ]*pt;
}

int nbt;
for(int i=0; i < 200000; ++i) {
  nbt=1+floor((4.0*rand()/randMax));
  pt=t[nbt]*pt;
  draw(pt);
}

Étiquettes : , ,


Fractals with Asymptote – fig0060

Category: Asymptote,Examples 2D,FractalsPh. Ivaldi @ 2 h 53 min

Figure 0006
(Compiled with Asymptote version 1.87svn-r4652)
    
//From documentation of Asymptote
size(10cm);

// Draw Sierpinski triangle with top vertex A, side s, and depth q.
void Sierpinski(pair A, real s, int q,
                bool top=true, bool randcolor=false) {
  pair B=A-(1,sqrt(2))*s/2;
  pair C=B+s;
  if(top) draw(A--B--C--cycle);
  if (randcolor) {
    filldraw((A+B)/2--(B+C)/2--(A+C)/2--cycle,
             (.33*rand()/randMax*red+.33*rand()/randMax*green+.33*rand()/randMax*blue));
  } else draw((A+B)/2--(B+C)/2--(A+C)/2--cycle);
  if(q > 0) {
    Sierpinski(A,s/2,q-1,false,randcolor);
    Sierpinski((A+B)/2,s/2,q-1,false,randcolor);
    Sierpinski((A+C)/2,s/2,q-1,false,randcolor);
  }
}

Sierpinski((0,1), 1, 5, randcolor=true);

Étiquettes : , , ,


Fractals with Asymptote – fig0070

Category: Asymptote,Examples 2D,FractalsPh. Ivaldi @ 3 h 53 min

Figure 0007
(Compiled with Asymptote version 1.87svn-r4652)
    
//Translate from http://zoonek.free.fr/LaTeX/Metapost/metapost.html
size(8cm);
void koch(pair A, pair B, int n) {
  pair C;
  C =rotate(120, point(A--B,1/3))*A;
  if (n>0) {
    koch( A,        point(A--B,1/3), n-1);
    koch( point(A--B,1/3), C,        n-1);
    koch( C,        point(A--B,2/3), n-1);
    koch( point(A--B,2/3), B,        n-1);
  } else draw(A--point(A--B,1/3)--C--point(A--B,2/3)--B);
}

pair z0=(1,0);
pair z1=rotate(120)*z0;
pair z2=rotate(120)*z1;
koch( z0, z1, 3 );
koch( z1, z2, 3 );
koch( z2, z0, 3 );

Étiquettes : ,


Fractals with Asymptote – fig0080

Category: Asymptote,Examples 2D,FractalsPh. Ivaldi @ 4 h 53 min

Figure 0008
(Compiled with Asymptote version 1.87svn-r4652)
    
size(10cm,0);

real mandelbrot(pair c, real r, int count=100) {
  int i=0;
  pair z=c;
  do {
    ++i;
    z=z^2+c;
  } while (length(z) <= r && i<count);

  return (i<count) ? i/count : 0;
}

real r=4;
real step=.01;
real xmin=-2.25, xmax=.75;
real ymin=-1.3, ymax=0;

real x=xmin, y=ymin;
int xloop=round((xmax-xmin)/step);
int yloop=round((ymax-ymin)/step);
pen p;
path sq=scale(step)*unitsquare;

for(int i=0; i < xloop; ++i) {
  for(int j=0; j < yloop; ++j) {
    p=mandelbrot((x,y),r,20)*red;
    filldraw(shift(x,y)*sq,p,p);
    y += step;
  }
  x += step;
  y=ymin;
}

add(reflect((0,0),(1,0))*currentpicture);

Étiquettes : , ,


Fractals with Asymptote – fig0090

Category: Asymptote,Examples 2D,FractalsPh. Ivaldi @ 5 h 53 min

Figure 0009
(Compiled with Asymptote version 1.87svn-r4652)
    
size(10cm,0);

real a=-1.5, b=2a/3;

picture H(pen p=currentpen) {
  picture H;
  draw(H,(-a,0)--(a,0)^^(-a,-b)--(-a,b)^^(a,-b)--(a,b),p);
  return H;
}

transform sc=scale(0.5);
transform[] t={identity(),
               shift(-a,b)*sc, shift(-a,-b)*sc,
               shift(a,b)*sc,  shift(a,-b)*sc};

picture Hfractal(int n, pen p=currentpen)
{
  picture pic;
  if(n == 0) return H(p);
  picture Ht=Hfractal(n-1,p);
  for (int i=0; i < 5; ++i) add(pic,t[i]*Ht);
  return pic;
}

add(Hfractal(4, bp+0.5*red));

Étiquettes : , , , ,


Fractals with Asymptote – fig0100

Category: Asymptote,Examples 2D,FractalsPh. Ivaldi @ 6 h 53 min

Figure 0010
(Compiled with Asymptote version 1.87svn-r4652)
    
size(10cm,0);

real a=-1.5, b=2a/3;

path[] H=(-a,0)--(a,0)^^(-a,-b)--(-a,b)^^(a,-b)--(a,b);

transform sc=scale(0.5);
transform[] t={shift(-a,b)*sc, shift(-a,-b)*sc,
               shift(a,b)*sc,  shift(a,-b)*sc};

void Hfractal(path[] g, int n, pen[] p=new pen[]{currentpen})
{
  p.cyclic=true;
  if(n == 0) draw(H,p[0]); else {
    for (int i=0; i < 4; ++i) {
      draw(t[i]*g,p[n]);
      Hfractal(t[i]*g,n-1,p);
    }
  }
}

Hfractal(H, 5, new pen[] {0.8*red, 0.8*green, 0.8*blue, black, blue+red});

Étiquettes : , , , ,


Fractals with Asymptote – fig0110

Category: Asymptote,Examples 2D,FractalsPh. Ivaldi @ 7 h 53 min

Figure 0011
(Compiled with Asymptote version 1.87svn-r4652)
    
/* Explanations HERE */
import geometry;
size(10cm,0);

triangle[] dissect(triangle T, int n)
{
  if(n <= 0) return new triangle[]{T};
  triangle[] OT;
  point M=midpoint(T.BC);
  triangle[] Tp=dissect(triangle(M,T.A,T.B),n-1);
  for(triangle t : Tp) OT.insert(0,t);
  triangle[] Tp=dissect(triangle(M,T.C,T.A),n-1);
  for(triangle t : Tp) OT.insert(0,t);
  return OT;
}

triangle T=rotate(45)*triangle((1,1),(0,0),(2,0));
triangle[] DT=dissect(T,9);
path g;
transform R=reflect(T.BC);

for(int i : DT.keys) {
  draw(DT[i],miterjoin+0.9*red);
  draw(R*DT[i],miterjoin+0.9*red);
  g=g--centroid(DT[i]);
}

draw(scale(sqrt(2))*unitsquare,bp+miterjoin+0.8*blue);
draw(g--reverse(R*g)--cycle,bp+miterjoin+yellow);

shipout(bbox(sqrt(2)*mm, Fill(black)));

Étiquettes : , , , , ,


Fractals with Asymptote – fig0120

Category: Asymptote,Examples 2D,FractalsPh. Ivaldi @ 8 h 53 min

Figure 0012
(Compiled with Asymptote version 1.87svn-r4652)
    
/* Explanations HERE */
size(12cm,0);

import geometry;

triangle T=triangleAbc(90,Tan(30),1);

triangle[] reverse(triangle[] arr)
{
  triangle[] or;
  int l=arr.length;
  for(int i=0; i < l; ++i) {
    or.push(arr[l-i-1]);
  }
  return or;
}

triangle[] dissect(triangle T, int n, bool reverse=false)
{
  if(n <= 0) return new triangle[]{T};
  triangle[] OT;

  point M=curpoint(T.AB,T.b()*Tan(30));
  point H=projection(T.BC)*M;
  triangle[] OT1, OT2, OT3;
  OT.append(dissect(triangle(H,T.B,M),n-1,!reverse));
  OT.append(reverse((dissect(triangle(H,T.C,M),n-1,!reverse))));
  OT.append(dissect(triangle(T.A,T.C,M),n-1,!reverse));
  return OT;
}

triangle[] DT=dissect(T,5);
point O=centroid(DT[0]);
path g;
transform Ro=rotate(30,T.B), Re=reflect(T.BC), Roj;

for(int i : DT.keys) {
  O=incenter(DT[i]);
  g=g--O;
}

g=reverse(g);
path G, g=g--Re*reverse(g) ;
for (int j=0; j < 12; j += 2) G=G--Ro^(-j)*g;

fill(G--cycle,0.3*blue);

for(int i : DT.keys) {
  for (int j=0; j < 12; j += 2) {
    Roj=Ro^j;
    draw(Roj*DT[i],miterjoin+0.8*red);
    draw(Roj*(Re*DT[i]),miterjoin+0.8*red);
  }
}

draw(G--cycle,bp+miterjoin+0.9*yellow);

shipout(bbox(2mm, FillDraw(black, 1mm+miterjoin+deepblue)));

Étiquettes : , , , , ,


L-System with Asymptote – fig0010

Category: Asymptote,L-SystemPh. Ivaldi @ 19 h 40 min

Figure 0001
(Compiled with Asymptote version 1.86svn-r4626)
    
import Lsystem;
size(10cm);

string[][] rules={{"F","FF"}, {"X","--FXF++FXF++FXF--"}};
Lsystem Sierpinski=Lsystem("FXF--FF--FF", rules, La=60, Lai=0);
Sierpinski.iterate(5);
draw(Sierpinski.paths(), bp+0.2*green);

shipout(bbox(Fill(paleyellow)));

Étiquettes : ,


L-System with Asymptote – fig0020

Category: Asymptote,L-SystemPh. Ivaldi @ 20 h 40 min

Figure 0002
(Compiled with Asymptote version 1.84svn-r4619)
    
import Lsystem;
size(10cm,0);

Lsystem SierpinskiCurve=
  Lsystem("YF",
          new string[][]{{"X","YF+XF+Y"},{"Y","XF-YF-X"}},
          La=60, Lai=0);
SierpinskiCurve.iterate(7);
draw(SierpinskiCurve.paths(), bp+0.2*green);

shipout(bbox(Fill(paleyellow)));


Étiquettes : ,


L-System with Asymptote – fig0030

Category: Asymptote,L-SystemPh. Ivaldi @ 21 h 40 min

Figure 0003
(Compiled with Asymptote version 1.84svn-r4619)
    
/* Source */
import Lsystem;
size(10cm,0);

Lsystem SierpinskiCarpet=
  Lsystem("F+F+F+F",
          new string[][]{{"F","FF+F+F+F+FF"}},
          La=90, Lai=0);
SierpinskiCarpet.iterate(4);
draw(SierpinskiCarpet.paths(), bp+0.2*green);

shipout(bbox(Fill(paleyellow)));

Étiquettes : ,


L-System with Asymptote – fig0040

Category: Asymptote,L-SystemPh. Ivaldi @ 22 h 40 min

Figure 0004
(Compiled with Asymptote version 1.84svn-r4619)
    
/*Source*/
import Lsystem;

size(8cm,0);
Lsystem Koch=Lsystem("+F--F--F",
                     new string[][]{{"F","F+F--F+F"}},
                     La=60, Lai=0);
Koch.iterate(4);
filldraw(Koch.paths()[0]&cycle, paleyellow, 1bp+black);
shipout(bbox(2mm, Fill(lightyellow)));

Étiquettes : ,


L-System with Asymptote – fig0050

Category: Asymptote,L-SystemPh. Ivaldi @ 23 h 40 min

Figure 0005
(Compiled with Asymptote version 1.84svn-r4619)
    
/*Source*/
import Lsystem;

size(8cm,0);
Lsystem Koch=Lsystem("+F+F+F+F+F",
                     new string[][]{{"F","F-F++F-F"}},
                     La=72);
Koch.iterate(4);
filldraw(Koch.paths()[0]&cycle, paleyellow, 1bp+black);
shipout(bbox(2mm, Fill(lightyellow)));

Étiquettes : ,


L-System with Asymptote – fig0060

Category: Asymptote,L-SystemPh. Ivaldi @ 0 h 40 min

Figure 0006
(Compiled with Asymptote version 1.84svn-r4619)
    
/*Source*/
import Lsystem;

size(8cm,0);
Lsystem Koch=Lsystem("-F--F--F",
                     new string[][]{{"F","F-F++F-F"}},
                     La=60);
Koch.iterate(4);
filldraw(Koch.paths()[0]&cycle, paleyellow, 1bp+black);
shipout(bbox(2mm, Fill(lightyellow)));

Étiquettes : ,


L-System with Asymptote – fig0070

Category: Asymptote,L-SystemPh. Ivaldi @ 1 h 40 min

Figure 0007
(Compiled with Asymptote version 1.84svn-r4619)
    
// Quadratic Koch Island
import Lsystem;
size(10cm,0);

string[][] rules={{"F","F-F+F+FFF-F-F+F"}};
Lsystem QuadraticKochIsland=Lsystem("F+F+F+F", rules, La=90, Lai=0);
QuadraticKochIsland.iterate(3);
draw(QuadraticKochIsland.paths(), bp+0.9*yellow);
shipout(bbox(3mm, Fill(black)));

Étiquettes : ,


L-System with Asymptote – fig0080

Category: Asymptote,L-SystemPh. Ivaldi @ 2 h 40 min

Figure 0008
(Compiled with Asymptote version 1.84svn-r4619)
    
/*Source*/
import Lsystem;
size(8cm,0);

Lsystem HilbertCurve=Lsystem("X",
                             new string[][]{{"X","-YF+XFX+FY-"},{"Y","+XF-YFY-FX+"}},
                             La=90, Lai=0);
HilbertCurve.iterate(6);
draw(HilbertCurve.paths(), linewidth(1bp));

shipout(bbox(Fill(lightgrey)));

Étiquettes : ,


L-System with Asymptote – fig0090

Category: Asymptote,L-SystemPh. Ivaldi @ 3 h 40 min

Figure 0009
(Compiled with Asymptote version 1.84svn-r4619)
    
/*Source*/
import Lsystem;
size(8cm,0);

Lsystem Fass=Lsystem("-L",
                     new string[][]{{"L","LFLF+RFR+FLFL-FRF-LFL-FR+F+RF-LFL-FRFRFR+"},
                                    {"R","-LFLFLF+RFR+FL-F-LF+RFR+FLF+RFRF-LFL-FRFR"}},
                     La=90);
Fass.iterate(3);
draw(Fass.paths(), linewidth(1bp));

shipout(bbox(Fill(lightgrey)));

Étiquettes : ,


L-System with Asymptote – fig0100

Category: Asymptote,L-SystemPh. Ivaldi @ 4 h 40 min

Figure 0010
(Compiled with Asymptote version 1.84svn-r4619)
    
/*An animation of the 3D Hilbert curve may be found HERE*/
import Lsystem;
size(10cm,0);
currentprojection=currentprojection=orthographic((10,5,6));

string[][] rules={{"X","^<XF^<XFX-F^>>XFX&F+>>XFX-F>X->"}};
Lsystem3 HilbertCurve3D=Lsystem3("X", rules, La=90);
HilbertCurve3D.iterate(3);

// !! Use a lot of memory !!
/* path3[] g=HilbertCurve3D.paths3();
   draw(g[0], linewidth(bp)+0.9*yellow);
*/

HilbertCurve3D.drawpaths3(linewidth(bp)+0.9*yellow);

shipout(bbox(3mm, Fill(black)));

Étiquettes : ,


L-System with Asymptote – fig0110

Category: Asymptote,L-SystemPh. Ivaldi @ 5 h 40 min

Figure 0011
(Compiled with Asymptote version 1.84svn-r4619)
    
/*Source*/
import Lsystem;
size(8cm,0);

string[][] rules={{"F","FF"},
                  {"H","+F+FH++FFH++F+FF+FH++FFH++F+F-"}};

Lsystem H=Lsystem("+H",rules, La=90);
H.iterate(5);
draw(H.paths(), white);

shipout(bbox(3mm, Fill(black)));

Étiquettes : ,


L-System with Asymptote – fig0120

Category: Asymptote,L-SystemPh. Ivaldi @ 6 h 40 min

Figure 0012
(Compiled with Asymptote version 1.84svn-r4619)
    
/*Source*/
import Lsystem;
size(10cm,0);

string[][] rules=new string[][]{{"F",""},{"X","-FX++FY-"},{"Y","+FX--FY+"}};
Lsystem dragon=Lsystem("X",rules, La=45, Lai=0);
dragon.iterate(12);
draw(dragon.paths(), white);

shipout(bbox(3mm, Fill(black)));

Étiquettes : ,


L-System with Asymptote – fig0130

Category: Asymptote,L-SystemPh. Ivaldi @ 7 h 40 min

Figure 0013
(Compiled with Asymptote version 1.84svn-r4619)
    
import Lsystem;
size(12cm,0);

string[][] rules={{"F","-F+F-F-F+F+FF-F+F+FF+F-F-FF+FF-FF+F+F-FF-F-F+FF-F-F+F+F-F+"}};
Lsystem segment32Curve= Lsystem("F+F+F+F", rules, La=90, Lai=45);
segment32Curve.iterate(2);
filldraw(segment32Curve.paths()[0]&cycle, 0.8*yellow, blue);
shipout(bbox(3mm, Fill(black)));

Étiquettes : ,


L-System with Asymptote – fig0140

Category: Asymptote,L-SystemPh. Ivaldi @ 8 h 40 min

Figure 0014
(Compiled with Asymptote version 1.84svn-r4619)
    
// Peano Gosper curve
import Lsystem;
size(8cm,0);

Lsystem PeanoGosperCurve=
  Lsystem("FX",
          new string[][]{{"X","X+YF++YF-FX--FXFX-YF+"},{"Y","-FX+YFYF++YF+FX--FX-Y"}},
          La=60, Lai=0);
PeanoGosperCurve.iterate(4);
draw(PeanoGosperCurve.paths(), bp+0.9*yellow);

shipout(bbox(3mm, Fill(black)));

Étiquettes : ,


L-System with Asymptote – fig0150

Category: Asymptote,L-SystemPh. Ivaldi @ 9 h 40 min

Figure 0015
(Compiled with Asymptote version 1.84svn-r4619)
    
import Lsystem;
size(8cm,0);

string[][] rules={{"X","XF-F+F-XF+F+XF-F+F-X"}};
Lsystem squareCurve= Lsystem("F+XF+F+XF", rules, La=90, Lai=45);
squareCurve.iterate(5);
filldraw(squareCurve.paths()[0]&cycle, grey, 1bp+0.9*yellow);
shipout(bbox(3mm, Fill(black)));

Étiquettes : ,


L-System with Asymptote – fig0160

Category: Asymptote,L-SystemPh. Ivaldi @ 10 h 40 min

Figure 0016
(Compiled with Asymptote version 1.84svn-r4619)
    
import Lsystem;
size(8cm,0);

string[][] rules={{"L","+R-F-R+"}, {"R","-L+F+L-"}};
Lsystem squareCurve= Lsystem("L--F--L--F", rules, La=45, Lai=45);
squareCurve.iterate(9);
filldraw(squareCurve.paths()[0]&cycle, grey, 1bp+0.9*yellow);

shipout(bbox(3mm, Fill(black)));

Étiquettes : ,


L-System with Asymptote – fig0170

Category: Asymptote,L-SystemPh. Ivaldi @ 11 h 40 min

Figure 0017
(Compiled with Asymptote version 1.84svn-r4619)
    
/* Source */
import Lsystem;
size(8cm,0);

string[][] rules={
  {"F", "F+f-FF+F+FF+Ff+FF-f+FF-F-FF-Ff-FFF"},
  {"f", "ffffff"}
};

Lsystem oer=Lsystem("F+F+F+F",rules,La=91);

oer.iterate(2);
draw(oer.paths(), bp+0.8*yellow);
shipout(bbox(2mm, Fill(black)));

Étiquettes : ,


L-System with Asymptote – fig0180

Category: Asymptote,L-SystemPh. Ivaldi @ 12 h 40 min

Figure 0018
(Compiled with Asymptote version 1.84svn-r4619)
    
import Lsystem;
size(10cm,0);

string[][] rules={
  {"F", ""},
  {"P", "--FR++++FS--FU"},
  {"Q", "FT++FR----FS++"},
  {"R", "++FP----FQ++FT"},
  {"S", "FU--FP++++FQ--"},
  {"T", "+FU--FP+"},
  {"U", "-FQ++FT-"}
};

Lsystem pentive=Lsystem("Q", rules, La=36, Lai=180);

pentive.iterate(8);
draw(pentive.paths(), 0.8*yellow);
shipout(bbox(2mm, Fill(black)));

Étiquettes : ,


L-System with Asymptote – fig0190

Category: Asymptote,L-SystemPh. Ivaldi @ 13 h 40 min

Figure 0019
(Compiled with Asymptote version 1.84svn-r4619)
    
/* Source */
import Lsystem;
size(8cm,0);

string[][] rules={
  {"A", "X+X+X+X+X+X+"},
  {"X", "[F+F+F+F[---X-Y]+++++F++++++++F-F-F-F]"},
  {"Y", "[F+F+F+F[---Y]+++++F++++++++F-F-F-F]"}
};

Lsystem spiral=Lsystem("AAAA",rules,La=15);

spiral.iterate(6);
draw(spiral.paths(), 0.9*green);

shipout(bbox(2mm, Fill(black)));

Étiquettes : ,


L-System with Asymptote – fig0230

Category: Asymptote,L-SystemPh. Ivaldi @ 17 h 40 min

Figure 0023
(Compiled with Asymptote version 1.86svn-r4626)
    
/*Inspirtaion*/
import Lsystem;
size(10cm,10cm);
settings.outformat="pdf"; // for opacity

string[][] rules=new string[][]{{"F", "FF-[-F+F+F]+[+F-F-F]"}};
Lsystem plant=Lsystem("F", rules, La=22.5, Lai=90);
plant.iterate(5);
path[] g=plant.paths();

tree g=plant.tree();

for (int i:g.keys) {
  if((g[i].depth == 0)) draw(g[i].g, yellow);
}

for (int i:g.keys) {
  if((g[i].depth > 0 )) draw(g[i].g, green+opacity(0.5));
}

for (int i:g.keys) {
  if((g[i].depth > 15)) draw(g[i].g, brown+opacity(0.3));
}

shipout(bbox(Fill(paleyellow)));

Étiquettes : ,


L-System with Asymptote – fig0240

Category: Asymptote,L-SystemPh. Ivaldi @ 18 h 40 min

Figure 0024
(Compiled with Asymptote version 1.84svn-r4619)
    
/*Inspirtaion*/
import Lsystem;
size(10cm,10cm);
settings.outformat="pdf"; // for opacity

string[][] rules=new string[][]{{"F", "FF"},{"X", "F-[[X]+X]+F[+FX]-X"}};
Lsystem plant=Lsystem("X", rules, La=22.5, Lai=90);
plant.iterate(8);
path[] g=plant.paths();

tree g=plant.tree();

for (int i:g.keys) {
  if((g[i].depth <= 2 )) draw(g[i].g, yellow);
}

for (int i:g.keys) {
  if((g[i].depth > 2 ) && (g[i].depth <= 10 )) draw(g[i].g, green+opacity(0.5));
}

for (int i:g.keys) {
  if((g[i].depth > 11)) draw(g[i].g, brown+opacity(0.3));
}

shipout(bbox(Fill(paleyellow)));

Étiquettes : ,


Official Asymptote example – PythagoreanTree

Category: Asymptote,Official Gallery One-PagerPh. Ivaldi @ 22 h 57 min

Figure 0177
(Compiled with Asymptote version 2.14svn-r5318)
/* This code comes from The Official Asymptote Gallery */
    
size(250);

real a=3;
real b=4;
real c=hypot(a,b);

transform ta=shift(c,c)*rotate(-aCos(a/c))*scale(a/c)*shift(-c);
transform tb=shift(0,c)*rotate(aCos(b/c))*scale(b/c);

picture Pythagorean(int n) {
  picture pic;
  fill(pic,scale(c)*unitsquare,1/(n+1)*green+n/(n+1)*brown);
  if(n == 0) return pic;
  picture branch=Pythagorean(--n);
  add(pic,ta*branch);
  add(pic,tb*branch);
  return pic;
}

add(Pythagorean(12));

Étiquettes :


Official Asymptote example – Sierpinski

Category: Asymptote,Official Gallery One-PagerPh. Ivaldi @ 1 h 57 min

Figure 0199
(Compiled with Asymptote version 2.14svn-r5318)
/* This code comes from The Official Asymptote Gallery */
    
size(10cm);

// Draw Sierpinski triangle with top vertex A, side s, and depth q.
void Sierpinski(pair A, real s, int q, bool top=true)
{
  pair B=A-(1,sqrt(2))*s/2;
  pair C=B+s;
  if(top) draw(A--B--C--cycle);
  draw((A+B)/2--(B+C)/2--(A+C)/2--cycle);
  if(q > 0) {
    Sierpinski(A,s/2,q-1,false);
    Sierpinski((A+B)/2,s/2,q-1,false);
    Sierpinski((A+C)/2,s/2,q-1,false);
  }
}

Sierpinski((0,1),1,5);

Étiquettes :


Official Asymptote example – dragon

Category: Asymptote,Official Gallery One-PagerPh. Ivaldi @ 14 h 57 min

Figure 0050
(Compiled with Asymptote version 2.14svn-r5318)
/* This code comes from The Official Asymptote Gallery */
    
pair crease(pair z1, pair z2, bool left)
{
  pair dz = z2 - z1;

  if (left)
    return z1 + dz * (0.5, 0.5);
  else
    return z1 + dz * (0.5, -0.5);
}

pair[] fold(pair[] oldz)
{
  int n = oldz.length;
  pair[] newz = new pair[2n-1];

  for (int i = 0; i < n-1; ++i)
    {
      newz[2i] = oldz[i];
      newz[2i+1] = crease(oldz[i], oldz[i+1], i%2==0);
    }

  newz[2(n-1)] = oldz[n-1];

  return newz;
}

pair[] dragon(int n, pair[] base={})
{
  if (base.length == 0)
    if (n%2 == 0)
      base = new pair[] {(0,0), (1,1) };
    else
      base = new pair[] {(0,0), (1,0) };

  pair[] z = base;

  for (int i = 1; i < n; ++i)
    z = fold(z);

  return z;
}

void drawtris(pair[] z, pen p = currentpen)
{
  int n = z.length;

  for (int i = 0; i < n-2; i+=2)
    fill(z[i]--z[i+1]--z[i+2]--cycle, p);
}

void drawtris(pair[] z, pen p1, pen p2)
{
  int n = z.length;

  for (int i = 0; i < n-2; i+=2)
    fill(z[i]--z[i+1]--z[i+2]--cycle, 2i < n-1 ? p1 : p2);
}

size(500,0);

int n = 10;

drawtris(dragon(n, new pair[] {(0,0), (1,0)}), black);
drawtris(dragon(n, new pair[] {(0,0), (0,-1)}), blue);
drawtris(dragon(n, new pair[] {(0,0), (-1,0)}), red);
drawtris(dragon(n, new pair[] {(0,0), (0,1)}),  green);

Étiquettes : ,


Official Asymptote example – fractaltree

Category: Asymptote,Official Gallery One-PagerPh. Ivaldi @ 12 h 57 min

Figure 0073
(Compiled with Asymptote version 2.14svn-r5318)
/* This code comes from The Official Asymptote Gallery */
    
size(200);

path ltrans(path p,int d)
{
  path a=rotate(65)*scale(0.4)*p;
  return shift(point(p,(1/d)*length(p))-point(a,0))*a;
}
path rtrans(path p, int d)
{
  path a=reflect(point(p,0),point(p,length(p)))*rotate(65)*scale(0.35)*p;
  return shift(point(p,(1/d)*length(p))-point(a,0))*a;
}

void drawtree(int depth, path branch)
{
  if(depth == 0) return;
  real breakp=(1/depth)*length(branch);
  draw(subpath(branch,0,breakp),deepgreen);
  drawtree(depth-1,subpath(branch,breakp,length(branch)));
  drawtree(depth-1,ltrans(branch,depth));
  drawtree(depth-1,rtrans(branch,depth));
  return;
}

path start=(0,0)..controls (-1/10,1/3) and (-1/20,2/3)..(1/20,1);
drawtree(6,start);


Étiquettes : ,