![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
import solids; currentprojection=orthographic(1,2,2); size(6cm,0); material m= // diffusepen, ambientpen, emissivepen, specularpen material( grey, yellow, black, orange); draw(surface(sphere(1)), m);
Compétitivité-Qualité-Fiabilité-Disponibilité
![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
// Author: John Bowman. size(6cm,0); import solids; currentprojection=orthographic(0,10,5); nslice=4*nslice; revolution r=sphere(O,1); draw(surface(r), lightgrey+opacity(0.75)); skeleton s; r.transverse(s,reltime(r.g,0.6)); r.transverse(s,reltime(r.g,0.5)); draw(s.transverse.back,linetype("8 8",8)); draw(s.transverse.front); r.longitudinal(s); draw(s.longitudinal.front); draw(s.longitudinal.back,linetype("8 8",8));
![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
import solids; size(6cm,0); currentprojection=orthographic(100,150,30); real r=1; skeleton s; revolution sph=sphere(O,r); draw(surface(sph), palegray); path3 cle=rotate(90,X)*scale3(r)*unitcircle3; triple cam=unit(currentprojection.camera); real a=degrees(xypart(cam),false)-90; real b=-sgn(cam.z)*aCos(sqrt(cam.x^2+cam.y^2)/abs(cam)); cle=rotate(b,cross(Z,cam))*rotate(a,Z)*cle; draw(cle,4pt+red);
![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
import solids; size(6cm,0); currentlight=light(diffuse=yellow, ambient=blue, specular=paleyellow, specularfactor=0, viewport=false,(5,-5,10)); // currentprojection=orthographic(100,100,30); real r=2; skeleton s; revolution sph=sphere(O,r); draw(surface(sph),red); triple cam=unit(currentprojection.camera); revolution cle=revolution(O,r*(rotate(90,Z)*cam),cam); draw(cle, 8pt+black);
![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
size(8cm,0); import solids; import graph3; //Draw 3D right angle (MA,MB) void drawrightangle(picture pic=currentpicture, triple M, triple A, triple B, real radius=0, pen p=currentpen, pen fillpen=nullpen, projection P=currentprojection) { p=linejoin(0)+linecap(0)+p; if (radius==0) radius=arrowfactor*sqrt(2); transform3 T=shift(-M); triple OA=radius/sqrt(2)*unit(T*A), OB=radius/sqrt(2)*unit(T*B), OC=OA+OB; path3 tp=OA--OC--OB; picture tpic; draw(tpic, tp, p=p); if (fillpen!=nullpen) draw(tpic, surface(O--tp--cycle), fillpen); add(pic,tpic,M); } currentprojection=orthographic(10,15,3); real r=10, h=6; // r=sphere radius; h=altitude section triple Op=(0,0,h); limits((0,0,0),1.1*(r,r,r)); axes3("x","y","z"); real rs=sqrt(r^2-h^2); // section radius real ch=180*acos(h/r)/pi; path3 arcD=Arc(O,r,180,0,ch,0,Y,50); revolution sphereD=revolution(O,arcD,Z); draw(surface(sphereD), opacity(0.5)+lightblue); draw(shift(0,0,h)*scale3(rs)*surface(unitcircle3),opacity(0.5)); path3 arcU=Arc(O,r,ch,0,0,0,Y,10); revolution sphereU=revolution(O,arcU,Z); draw(surface(sphereU), opacity(0.33)+lightgrey); // right triangle OO'A triple A=rotate(100,Z)*(rs,0,h); dot("$O$",O,NW); dot("$O'$",Op,W); dot("$A$",A,N); draw(A--O--Op--A); drawrightangle(Op,O,A); if(!is3D()) shipout(format="pdf", bbox(Fill(paleyellow)));
![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
/* This code comes from The Official Asymptote Gallery */ import three; size(200); currentprojection=orthographic(5,4,3); draw(unitsphere,green,render(compression=Zero,merge=true));
![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
/* This code comes from The Official Asymptote Gallery */ import solids; settings.render=0; settings.prc=false; size(200); revolution r=sphere(O,1); draw(r,1,longitudinalpen=nullpen); draw(r.silhouette());
![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
/* This code comes from The Official Asymptote Gallery */ size(100); import solids; currentprojection=orthographic(5,4,2); revolution sphere=sphere(1); draw(surface(sphere),green+opacity(0.2)); draw(sphere,m=7,blue);
![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
/* This code comes from The Official Asymptote Gallery */ import three; picture pic; unitsize(pic,5cm); currentlight.viewport=false; settings.render=4; settings.toolbar=false; viewportmargin=(1cm,1cm); draw(pic,scale3(0.5)*unitsphere,green,render(compression=Low,merge=true)); draw(pic,Label("$x$",1),O--X); draw(pic,Label("$y$",1),O--Y); draw(pic,Label("$z$",1),O--Z); // Europe and Asia: //addViews(pic,ThreeViewsFR); //addViews(pic,SixViewsFR); // United Kingdom, United States, Canada, and Australia: addViews(pic,ThreeViewsUS); //addViews(pic,SixViewsUS); // Front, Top, Right, // Back, Bottom, Left: //addViews(pic,SixViews);
![]() |
|
(Compiled with Asymptote version 2.14svn-r5318) |
/* This code comes from The Official Asymptote Gallery */ import graph3; size(12cm); currentprojection=orthographic(1,-2,1); currentlight=(1,-1,0.5); triple f(pair z) {return expi(z.x,z.y);} path3 vector(pair z) { triple v=f(z); return O--(v.y,v.z,v.x); } add(vectorfield(vector,f,(0,0),(pi,2pi),10,0.25,red,render(merge=true))); draw(unitsphere,gray+opacity(0.5),render(compression=0,merge=true));
![]() |
|
(Compiled with Asymptote version 1.86svn-r4626) |
import graph3; import animation; import solids; settings.render=0; animation A; A.global=false; int nbpts=500; real q=2/5; real pas=5*2*pi/nbpts; int angle=3; real R=3; unitsize(1cm); real x(real t){return R*cos(q*t)*cos(t);} real y(real t){return R*cos(q*t)*sin(t);} real z(real t){return R*sin(q*t);} triple[] P; real t=-pi; for (int i=0; i<nbpts; ++i) { t+=pas; P.push((x(t),y(t),z(t))); } currentprojection=orthographic((0,5,2)); currentlight=(3,3,5); pen p=rgb(0.1,0.1,0.58); transform3 t=rotate(angle,(0,0,0),(1,0.25,0.25)); filldraw(box((-R-0.5,-R-0.5),(R+0.5,R+0.5)), p, 3mm+black+miterjoin); revolution r=sphere(O,R); draw(surface(r),p); for (int phi=0; phi<360; phi+=angle) { bool[] back,front; save(); for (int i=0; i<nbpts; ++i) { P[i]=t*P[i]; bool test=dot(P[i],currentprojection.camera) > 0; front.push(test); } draw(segment(P,front,operator ..),linewidth(1mm)); draw(segment(P,!front,operator ..),grey); A.add(); restore(); } A.movie(options="-density 350 -resample 96 -quality 100 -depth 8 -strip");
![]() |
|
(Compiled with Asymptote version 1.86svn-r4626) |
size(0,10cm); import graph3; import animation; import solids; currentlight.background=black; settings.render=0; animation A; A.global=false; int nbpts=500; real q=2/5; real pas=5*2*pi/nbpts; int angle=4; real R=0.5; pen p=rgb(0.1,0.1,0.58); triple center=(1,1,1); transform3 T=rotate(angle,center,center+X+0.25*Y+0.3*Z); real x(real t){return center.x+R*cos(q*t)*cos(t);} real y(real t){return center.y+R*cos(q*t)*sin(t);} real z(real t){return center.z+R*sin(q*t);} currentprojection=orthographic(1,1,1); currentlight=(0,center.y-0.5,2*(center.z+R)); triple U=(center.x+1.1*R,0,0), V=(0,center.y+1.1*R,0); path3 xy=plane(U,V,(0,0,0)); path3 xz=rotate(90,X)*xy; path3 yz=rotate(-90,Y)*xy; triple[] P; path3 curve; real t=-pi; for (int i=0; i < nbpts; ++i) { t+=pas; triple M=(x(t),y(t),z(t)); P.push(M); curve = curve..M; } curve=curve..cycle; draw(surface(xy), grey); draw(surface(xz), grey); draw(surface(yz), grey); triple xyc=(center.x,center.y,0); path3 cle=shift(xyc)*scale3(R)*unitcircle3; surface scle=surface(cle); draw(scle, black); draw(rotate(90,X)*scle, black); draw(rotate(-90,Y)*scle, black); draw(surface(sphere(center,R)), p); triple vcam=1e5*currentprojection.camera-center; for (int phi=0; phi<360; phi+=angle) { bool[] back,front; save(); for (int i=0; i<nbpts; ++i) { P[i]=T*P[i]; bool test=dot(P[i]-center,vcam) > 0; front.push(test); } curve=T*curve; draw(segment(P,front,operator ..), paleyellow); draw(segment(P,!front,operator ..),0.5*(paleyellow+p)); draw((planeproject(xy)*curve)^^ (planeproject(xz)*curve)^^ (planeproject(yz)*curve), paleyellow); A.add(); restore(); } A.movie(options="-density 350 -resample 96 -quality 100 -depth 8 -strip");